
ECE 344 Operating Systems 1

Operating Systems –
Memory Management

ECE 344

ECE 344 Operating Systems 2

Memory Management

• Background
• Swapping
• Contiguous Allocation
• Paging
• Segmentation
• Segmentation with Paging
• Virtual Memory

ECE 344 Operating Systems 3

Binding of Instructions and Data to Memory
• Compile time:

– known memory location
– absolute code can be generated
– must recompile code if starting location changes.

• Load time:
– generate relocatable code if memory location is

not known at compile time.
• Execution time:

– process can be moved during its execution from
one memory segment to another.

– need hardware support for address mapping

ECE 344 Operating Systems 4

Logical vs. Physical Address Space
• A logical address space that is bound to a

separate physical address space
– Logical address – generated by the CPU;

also referred to as virtual address.
– Physical address – address generated by

the memory management unit.
• Logical and physical addresses are the same

in compile-time and load-time address-
binding schemes.

• Logical (virtual) and physical addresses differ
in execution-time address-binding scheme.

ECE 344 Operating Systems 5

Memory-Management Unit (MMU)

• Hardware device that maps logical/virtual to
physical address.

• In MMU the value in the relocation register is
added to every address generated by a
program at the time the address is sent to
memory.

• The program deals with logical addresses; it
never sees the real physical addresses.

ECE 344 Operating Systems 6

Dynamic relocation/binding using a
relocation register

ECE 344 Operating Systems 7

Memory Allocation

ECE 344 Operating Systems 8

Contiguous Memory Allocation

• Multiple partitions for multiple processes
• Relocation register and limit registers to protect

processes from one another (and protect OS code)
• Both registers are part of process context (i.e., PCB)
• Relocation register contains value of smallest

physical address
• Limit register contains range of logical addresses
• Each logical address must be less than the limit

register.

ECE 344 Operating Systems 9

Hardware Support for Relocation
and Limit Registers

ECE 344 Operating Systems 10

Multi-partition Allocation

• Holes are blocks of available memory
• Holes of various size are scattered

throughout memory.
• When a process arrives, it is allocated

memory from a hole large enough to
accommodate it.

• Operating system maintains information
about:
– allocated partitions
– free partitions (i.e., holes)

ECE 344 Operating Systems 11

time

hole

P
Q

R

S

T

P
Q

S

T

hole

P

S

T

P

S

T

ECE 344 Operating Systems 12

Dynamic Storage Allocation Problem

• How to satisfy a request for memory of size n
from a list of free holes?

• First-fit: Allocate the first hole that is big
enough.

• Best-fit: Allocate the smallest hole that is big
enough; must search entire list, unless ordered
by size. Produces the smallest leftover hole.

• Worst-fit: Allocate the largest hole; must also
search entire list. Produces the largest
leftover hole

.

ECE 344 Operating Systems 13

External Fragmentation

Process 5

Process 6

hole

hole

New Process

Memory

ECE 344 Operating Systems 14

Internal Fragmentation

Process 5
required space

• Memory is allocated in block/partition/junks
• Giving back a small amount of memory to the memory

manager is not feasible
• Overhead of managing a few left-over bytes is not worth the
effort

Memory

ECE 344 Operating Systems 15

Fragmentation

• External Fragmentation – total memory space
exists to satisfy a request, but it is not contiguous.

• Internal Fragmentation – allocated memory may
be slightly larger than requested memory; this size
difference is memory internal to a partition, but not
being used.

• Reduce external fragmentation by compaction
– Shuffle memory contents to place all free memory

together in one large block.
– Compaction is possible only if address binding is

dynamic, and is done at execution time.

ECE 344 Operating Systems 16

Preview

• The problem so far has been that we
allocated memory in contiguous junks

• What if we could allocate memory in non-
contiguous junks?

• We will be looking at techniques that aim at
avoiding
– External fragmentation
– (Internal fragmentation)

ECE 344 Operating Systems 17

Process

Process

Memory

Memory
Page or Segment

Frame

18

Paging
• Physical address space of a process can be non-

contiguous;
• Process is allocated physical memory whenever the latter is

available.
• Divide physical memory into fixed-sized blocks called

frames (size is power of 2, between 512 bytes and 8192
bytes).

• Divide logical memory into blocks of same size called
pages.

• Keep track of all free frames.
• To run a program of size n pages, need to find n free

frames and load program.
• Set up a page table to translate logical to physical

addresses.
• Internal fragmentation: for last page)

ECE 344 Operating Systems 19

Address Translation Scheme

• Address generated by CPU is divided into:
– Page number (p)

• Used as an index into the page table
• Page table contains base address of each page in

physical memory.

– Page offset (d)
• combined with base address to define the

physical memory address sent to the memory unit.

ECE 344 Operating Systems 20

Address Translation Architecture

base address

page number offset

ECE 344 Operating Systems 21
Paging Example

Process

ECE 344 Operating Systems 22

Paging Example

Page size is 4
Page 0 is in Frame 5, located at address 20
i.e., 5 x 4 = 20
Logical address (1,3) (=7) is mapped to 27
(6 x 4 + 3 = 27)

ECE 344 Operating Systems 23

Page
Number,
4 bits
= 16 pages

offset,
12 bits
= 4096 byte locations
(4 k pages)

ECE 344 Operating Systems 24

Before allocation After allocation

free

free

free

free

free

ECE 344 Operating Systems 25

Implementation of Page Table

• Page table is kept in main memory.
• Page-table base register (PTBR) points to the

page table (part of process context).
• Page-table length register (PRLR) indicates

size of the page table (part of process context).
• In this scheme every data/instruction access

requires two memory accesses. One for the
page table and one for the data/instruction.

• This is pretty inefficient, if done in software

ECE 344 Operating Systems 26

Implementation of Page Table

• Page table can be extremely large
• 32 bit virtual address and 4k page size results

in 1 million pages (232/212 = 220)
• 4 byte page table entry, results in a 4MB table
• Page table requires 1 million entries, each

process has its own table
• Mapping has to be fast
• A typical instruction has 1, 2, … operands,

which require memory access (through page
table)

ECE 344 Operating Systems 27

Implementation of Page Table

• Page table as a set of registers
– Adds to context switch overhead
– Page table usually too large

• The two memory access problem can be
solved by the use of a special fast-lookup
hardware cache called associative
memory

• A.k.a. a translation look-aside buffer (TLB)

ECE 344 Operating Systems 28

Paging Hardware
with TLB

ECE 344 Operating Systems 29

Page Table Structure

• Hierarchical Paging

• Hashed Page Tables

• Inverted Page Tables

ECE 344 Operating Systems 30

Hierarchical Page Tables

• Allocating the page table contiguously in
memory is not feasible

• Break up the logical address space into
multiple page tables

• Recursively apply the paging scheme to the
page table itself

• A simple technique is a two-level page table

ECE 344 Operating Systems 31

Two-Level Paging Example
• A logical address (on 32-bit machine with 4K page

size) is divided into:
– A page number consisting of 20 bits.
– Possible address space of size 220 pages.
– A page offset consisting of 12 bits.
– 12 bits can address 4096 bytes (i.e., all bytes in the 4k

page).
• Since the page table is paged, the page number is

further divided into:
– a 10-bit page number.
– a 10-bit page offset.

ECE 344 Operating Systems 32

Two-level Address

• Thus, a logical address is as follows:

• where p1 is an index into the outer page
table, and p2 is the displacement within the
page of the (inner) page table.

page number page offset

p1 p2 d

10 bits 10 bits 12 bits

ECE 344 Operating Systems 33

Address-Translation Scheme
• Address-translation scheme for a two-level

32-bit paging architecture

ECE 344 Operating Systems 34

Two-Level Page-
Table Scheme

•

{

d

ECE 344 Operating Systems 35

Shared Memory

ECE 344 Operating Systems 36

Shared Pages

• Shared code
– One copy of read-only (reentrant) code

shared among processes (i.e., text editors,
compilers, window systems).

– Shared code must appear in same location in
the logical address space of all processes.

• Private code and data
– Each process keeps a separate copy of the

code and data.
– The pages for the private code and data can

appear anywhere in the logical address
space.

ECE 344 Operating Systems 37

Shared Pages Example

ECE 344 Operating Systems 38

Summary

• Address binding
• Contiguous memory management
• Overlays
• Swapping
• Paging

ECE 344 Operating Systems 39

Virtual Memory

ECE 344 Operating Systems 40

Virtual Memory
• Only part of the program needs to be in

memory for execution.
• Logical address space can therefore be

much larger than physical address space.
• Physical address spaces can be shared by

several processes.
• More efficient process creation.
• Virtual memory can be implemented via

– Demand paging
– Demand segmentation

ECE 344 Operating Systems 41

Virtual Memory that
is larger than
physical memory

ECE 344 Operating Systems 42

Demand Paging
• Bring a page into memory only when it is

needed.
– Less I/O needed
– Less memory needed
– Faster response
– More users

• Page is needed ⇒ reference to it
– invalid reference ⇒ abort
– not-in-memory ⇒ bring to memory

ECE 344 Operating Systems 43

Transfer of a paged
memory to
contiguous disk
space

A Pager (vs. swapper)

Predictively brings
in pages of the process

ECE 344 Operating Systems 44

Valid-Invalid Bit
• With each page table entry a valid–

invalid bit is associated
(1 ⇒ in-memory, 0 ⇒ not-in-memory)

• Initially valid–invalid bit is set to 0 on
all entries

• During address translation, if valid–
invalid bit in page table entry is 0 ⇒
page fault

• Demand paging (all bits initially 0)

ECE 344 Operating Systems 45

ECE 344 Operating Systems 46

Steps in Handling a Page Fault

ECE 344 Operating Systems 47

What happens if there is no free frame?

• Page replacement – find some page in
memory, but not really in use, swap it out.
– algorithm
– performance

• algorithm should result in minimum number of
page faults

• Same page may be brought into memory
several times.

ECE 344 Operating Systems 48

Page Replacement

• Prevent over-allocation of memory by
modifying page-fault service routine to include
page replacement

• Use modify (dirty) bit to reduce overhead of
page transfers
– only modified pages need to be written to disk

• Page replacement completes separation
between logical memory and physical memory

• Thus large virtual memory can be provided
on a smaller physical memory

ECE 344 Operating Systems 49

Need For Page Replacement

ECE 344 Operating Systems 50

Basic Page Replacement

Find the location of the desired page on disk
Find a free frame
If there is a free frame, use it
If there is no free frame, use a page
replacement algorithm to select a victim frame
Read the desired page into the (newly) freed
frame
Update the page table
Restart the process

ECE 344 Operating Systems 51

Page Replacement

ECE 344 Operating Systems 52

Page Replacement Algorithms

• Want lowest page-fault rate.
• Evaluate algorithm by running it on a

particular string of memory references
(reference string)

• Compute the number of page faults on that
string

• In all our examples, the reference string is
1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5.

ECE 344 Operating Systems 53

Graph of Page Faults Versus The Number
of Frames

ECE 344 Operating Systems 54

First-In-First-Out (FIFO) Algorithm

• Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
• Replace oldest page
• 3 (4) frames (3 (4) pages can be in memory at

a time per process)

• More frames, more faults)-: !
• Implemented with FIFO-queue

1

2

3

1

2

3

4

1

2

5

3

4

9 page faults

1

2

3

1

2

3

5

1

2

4

5 10 page faults

44 3

• initialization code
• frequently used code

ECE 344 Operating Systems 55

FIFO Page Replacement

ECE 344 Operating Systems 56

FIFO Illustrating Belady’s Anamoly (1976)

more frames ⇒ less page faults

ECE 344 Operating Systems 57

Optimal Algorithm

• Replace page that will not be used for
longest period of time (cf. SJF)

• A 4 frames example
1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

• How do we know this?
• Used for measuring how well an algorithm

performs
• A baseline, we can’t do better

1

2

3

4

6 page faults

4 5

ECE 344 Operating Systems 58

Optimal Page Replacement

ECE 344 Operating Systems 59

Least Recently Used (LRU) Algorithm

Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

• use recent past as approximation
of near future

• Counter implementation
– Every page table entry has a counter; every

time page is referenced through this entry,
copy the clock into the counter.

– When a page needs to be replaced, look at
the counters to determine least recently used

1

2

3 4

5

4 3

5

ECE 344 Operating Systems 60

LRU Page Replacement

ECE 344 Operating Systems 61

LRU Algorithm (Cont.)

• Stack implementation – keep a stack of
page numbers in a double link form

• Page referenced
• move it to the top
• requires 6 pointers to be changed
• No search for replacement

ECE 344 Operating Systems 62

Use Of A Stack to Record The Most Recent Page
References

ECE 344 Operating Systems 63

LRU Approximation Algorithm 1
• Reference bit

– With each page associate a bit, initially all 0
– When page is referenced bit set to 1
– Replace the page which is 0 (if one exists)
– We do not know the order, however

ECE 344 Operating Systems 64

LRU Approximation Algorithm 2

• Keep several reference bits (e.g., 8 bits) per page
• And keep the reference bit (as before)
• At periodic intervals (timer interrupt, e.g., 100

milliseconds) shift the reference bit of every page
into the high-order position of the reference bit

• Right shift the reference bits, dropping low order bit
• 0000 0000 – not been used in past intervals
• 1111 1111 – has been used each in interval
• Interpret as unsigned integers, choose smallest as

victim

ECE 344 Operating Systems 65

LRU Approximation Algorithm 3

• Second chance
– Need 1 reference bit
– Clock replacement
– If page to be replaced (in clock order) has

reference bit set to 1. then:
• set reference bit 0.
• leave page in memory.
• replace next page (in clock order), subject to same

rules.

ECE 344 Operating Systems 66

Second-Chance (clock) Page-Replacement
Algorithm

ECE 344 Operating Systems 67

Counting Algorithms

• Keep a counter of the number of references
that have been made to each page

• LFU Algorithm: replaces page with smallest
count

• MFU Algorithm: based on the argument that
the page with the smallest count was
probably just brought in and has yet to be
used

ECE 344 Operating Systems 68

Allocation of Frames

• Each process needs minimum number of
pages

• Example: IBM 370 – 6 pages to handle
MOVE instruction:
– instruction is 6 bytes, might span 2 pages
– 2 pages to handle from
– 2 pages to handle to

ECE 344 Operating Systems 69

Minimum number of frames

instr

ECE 344 Operating Systems 70

Fixed Allocation

• Two major allocation schemes
– fixed allocation
– priority allocation

• Equal allocation – e.g., if 100 frames and 5
processes, give each 20 pages.

• Proportional allocation – Allocate according
to the size of process.

ECE 344 Operating Systems 71

Fixed Allocation

5964
137
127

564
137
10

127
10
64

2

1

2

≈×=

≈×=

=

=
=

a

a

s
s
m

i
m

S
spa

m
sS

ps

i
ii

i

ii

×==

=
∑=

=

 for allocation

frames of number total

 process of size
Example:

ECE 344 Operating Systems 72

Priority Allocation

• Use a proportional allocation scheme using
priorities rather than size

• If process Pi generates a page fault,
– select for replacement one of its frames
– select for replacement a frame from a process

with lower priority number

ECE 344 Operating Systems 73

Global vs. Local Allocation

• Global replacement – process selects a
replacement frame from the set of all
frames; one process can take a frame from
another

• Local replacement – each process selects
from only its own set of allocated frames.

ECE 344 Operating Systems 74

Thrashing

• If a process does not have “enough” pages, the
page-fault rate is very high. This leads to:
– low CPU utilization (ready queue is empty)
– operating system (may) think that it needs to increase

the degree of multiprogramming
– another process added to the system
– this process requires pages to be brought in …

• Thrashing ≡ a process is busy swapping pages in
and out (spends more time paging than executing.)

ECE 344 Operating Systems 75

Thrashing

bring in more processes

ECE 344 Operating Systems 76

Locality
• Why does paging work?
• Due to locality (memory accesses are not random)
• Locality model

– Process migrates from one locality to another
– Locality corresponds to a procedure call (local variables,

some global variables and instructions of procedure)
– Localities may overlap

• Why does thrashing occur?

sum over size of all localities >
total physical memory size

ECE 344 Operating Systems 77

locality
instructions
local variables
subset of global variables

• Not random
• Execution moves from one

locality to the next

ECE 344 Operating Systems 78

Working-Set Model (approximate locality)
• ∆ ≡ working-set window ≡ a fixed number of page

references. Example: 10,000 instruction
• WSSi (working set size of Process Pi) =

total number of pages referenced in the most
recent ∆ (varies over time)
– if ∆ too small will not encompass entire locality.
– if ∆ too large will encompass several localities.
– if ∆ = ∞ ⇒ will encompass entire process.

• D = Σ WSSi ≡ total frames demanded
• if D > m ⇒ Thrashing (m is total physical memory)
• Policy if D > m, then suspend one of the

processes.

ECE 344 Operating Systems 79

Working-set model

ECE 344 Operating Systems 80

Keeping Track of the Working Set

• Approximate with interval timer + a reference bit
• Example: ∆ = 10,000

– Timer interrupts after every 5000 time units.
– Keep in memory 2 bits for each page.
– Whenever a timer interrupts copy reference bit to memory

bits and sets the values of all reference bits to 0.
– If one of the bits in memory = 1 ⇒ page in working set.

• Why is this not completely accurate?
• Improvement = 10 bits and interrupt every 1000

time units (cost of interrupt!).

ECE 344 Operating Systems 81

Page-Fault Frequency Scheme

ECE 344 Operating Systems 82

Summary Memory Management

• Contiguous memory management
• Paging and segmentation
• Virtual memory management based on

demand paging
• Page replacement algorithm
• Frame allocation strategies
• Thrashing
• Locality and working set model

ECE 344 Operating Systems 83

ECE 344 Operating Systems 84

OS Lecture
• Concepts and OS hacking
• Processes and Threads
• OS System Structure and Architecture
• Synchronization

– Software based solutions
– Hardware based solutions
– Semaphores, mutexes/locks, CVs, monitors
– Synchronization problems

• Scheduling algorithm
• Memory management

ECE 344 Operating Systems 85

Assignments
• Tools: CVS, GDB, GCC
• Adding a delta to a large and complex software system

– Not much know methodology about how to do this (but see
software engineering course)

– Don’t be afraid of the size; work with a localized
understanding of system; 20K lines of code is nothing
compared to the size of real OS, DBs, …

• Making design decision which great reach (actually making the
decision is difficult)

• Implementation of synchronization mechanisms
• Use of synchronization mechanisms
• Implementation of system calls (not just a procedure call)
• Implementation of scheduling algorithms and performance

counters
• OS and Systems is about hacking; that is building and

extending large complex software systems

ECE 344 Operating Systems 86

The Final

• Closed book
• Covers entire lecture and assignments
• Rough breakdown of final, don’t quote me

– 20 – 30 % knowledge questions a la midterm
– 10 – 20 % about assignments
– 20 – 30 % synchronization
– 10 – 20 % memory management
– Rest other course topics

ECE 344 Operating Systems 87

The End

ECE 344 Operating Systems 88

ECE 344 Operating Systems 89

Segmentation
• Memory-management scheme that supports user’s

view of memory.
• A program is a collection of segments. A segment

is a logical unit such as:
main program,
procedure,
function,
method,
object,
local variables, global variables,
common block,
stack,
symbol table, arrays

ECE 344 Operating Systems 90

User’s View of a Program

ECE 344 Operating Systems 91

Logical View of Segmentation

1

3

2

4

1

4

2

3

user space physical memory space

ECE 344 Operating Systems 92

Segmentation Architecture
• Logical address consists of a two tuple:

<segment-number, offset>,
• Segment table – maps two-dimensional

physical addresses; each table entry has:
– base – contains the starting physical address where

the segments reside in memory.
– limit – specifies the length of the segment.

• Segment-table base register (STBR) points
to the segment table’s location in memory.

• Segment-table length register (STLR)
indicates number of segments used by a
program;

ECE 344 Operating Systems 93

Segmentation
Hardware

ECE 344 Operating Systems 94

Example of Segmentation

ECE 344 Operating Systems 95

Sharing of Segments

ECE 344 Operating Systems 96

ECE 344 Operating Systems 97

Hashed Page Tables

• Common in address spaces > 32 bits.
• The virtual page number is hashed into a

page table.
• This page table contains a chain of elements

hashing to the same location.
• Virtual page numbers are compared in this

chain searching for a match. If a match is
found, the corresponding physical frame is
extracted.

ECE 344 Operating Systems 98

Hashed Page Table

ECE 344 Operating Systems 99

Inverted Page Table
• One entry for each real frame of memory.
• Entry consists of the virtual address of the

page stored in that real memory location, with
information about the process that owns that
page.

• Decreases memory needed to store each
page table, but increases time needed to
search the table when a page reference
occurs.

• Use hash table to limit the search to one —
or at most a few — page-table entries.

ECE 344 Operating Systems 100

Inverted Page Table Architecture

