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Memory Management

• Background
• Swapping 
• Contiguous Allocation
• Paging
• Segmentation
• Segmentation with Paging
• Virtual Memory
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Binding of Instructions and Data to Memory
• Compile time:

– known memory location
– absolute code can be generated
– must recompile code if starting location changes.

• Load time:
– generate relocatable code if memory location is 

not known at compile time.
• Execution time:  

– process can be moved during its execution from 
one memory segment to another.  

– need hardware support for address mapping
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Logical vs. Physical Address Space
• A logical address space that is bound to a 

separate physical address space
– Logical address – generated by the CPU; 

also referred to as virtual address.
– Physical address – address generated by 

the memory management unit.
• Logical and physical addresses are the same 

in compile-time and load-time address-
binding schemes.

• Logical (virtual) and physical addresses differ 
in execution-time address-binding scheme.
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Memory-Management Unit (MMU)

• Hardware device that maps logical/virtual to 
physical address.

• In MMU the value in the relocation register is 
added to every address generated by a 
program at the time the address is sent to 
memory.

• The program deals with logical addresses; it 
never sees the real physical addresses.
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Dynamic relocation/binding using a 
relocation register
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Memory Allocation
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Contiguous Memory Allocation

• Multiple partitions for multiple processes
• Relocation register and limit registers to protect 

processes from one another (and protect OS code)
• Both registers are part of process context (i.e., PCB)
• Relocation register contains value of smallest 

physical address
• Limit register contains range of logical addresses
• Each logical address must be less than the limit 

register. 
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Hardware Support for Relocation 
and Limit Registers
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Multi-partition Allocation

• Holes are blocks of available memory
• Holes of various size are scattered 

throughout memory.
• When a process arrives, it is allocated 

memory from a hole large enough to 
accommodate it.

• Operating system maintains information 
about:
– allocated partitions
– free partitions (i.e., holes)



ECE 344 Operating Systems 11

time

hole

P
Q

R

S

T

P
Q

S

T

hole

P

S

T

P

S

T



ECE 344 Operating Systems 12

Dynamic Storage Allocation Problem

• How to satisfy a request for memory of size n 
from a list of free holes?

• First-fit:  Allocate the first hole that is big 
enough.

• Best-fit:  Allocate the smallest hole that is big 
enough; must search entire list, unless ordered 
by size.  Produces the smallest leftover hole.

• Worst-fit:  Allocate the largest hole; must also 
search entire list.  Produces the largest 
leftover hole

.
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External Fragmentation

Process 5

Process 6

hole
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New Process
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Internal Fragmentation

Process 5
required space

• Memory is allocated in block/partition/junks
• Giving back a small amount of memory to the memory

manager is not feasible
• Overhead of managing a few left-over bytes is not worth the 
effort

Memory
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Fragmentation

• External Fragmentation – total memory space 
exists to satisfy a request, but it is not contiguous.

• Internal Fragmentation – allocated memory may 
be slightly larger than requested memory; this size 
difference is memory internal to a partition, but not 
being used.

• Reduce external fragmentation by compaction
– Shuffle memory contents to place all free memory 

together in one large block.
– Compaction is possible only if address binding is 

dynamic, and is done at execution time.
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Preview

• The problem so far has been that we 
allocated memory in contiguous junks

• What if we could allocate memory in non-
contiguous junks?

• We will be looking at techniques that aim at 
avoiding
– External fragmentation
– (Internal fragmentation)
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Paging
• Physical address space of a process can be non-

contiguous; 
• Process is allocated physical memory whenever the latter is 

available.
• Divide physical memory into fixed-sized blocks called 

frames (size is power of 2, between 512 bytes and 8192 
bytes).

• Divide logical memory into blocks of same size called 
pages.

• Keep track of all free frames.
• To run a program of size n pages, need to find n free 

frames and load program.
• Set up a page table to translate logical to physical 

addresses. 
• Internal fragmentation: for last page)
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Address Translation Scheme

• Address generated by CPU is divided into:
– Page number (p)

• Used as an index into the page table
• Page table contains base address of each page in 

physical memory.

– Page offset (d)
• combined with base address to define the 

physical memory address sent to the memory unit.
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Address Translation Architecture

base address

page number offset
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Paging Example

Process
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Paging Example

Page size is 4
Page 0 is in Frame 5, located at address 20
i.e., 5 x 4 = 20
Logical address (1,3) (=7) is mapped to 27
(6 x 4 + 3 = 27) 
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Page 
Number,
4 bits
= 16 pages

offset,
12 bits
= 4096 byte locations
(4 k pages)
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Implementation of Page Table

• Page table is kept in main memory.
• Page-table base register (PTBR) points to the 

page table (part of process context).
• Page-table length register (PRLR) indicates 

size of the page table (part of process context).
• In this scheme every data/instruction access

requires two memory accesses.  One for the 
page table and one for the data/instruction.

• This is pretty inefficient, if done in software
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Implementation of Page Table

• Page table can be extremely large
• 32 bit virtual address and 4k page size results 

in  1 million pages (232/212 = 220)
• 4 byte page table entry, results in a 4MB table
• Page table requires 1 million entries, each 

process has its own table
• Mapping has to be fast
• A typical instruction has 1, 2, … operands, 

which require memory access (through page 
table)
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Implementation of Page Table

• Page table as a set of registers
– Adds to context switch overhead
– Page table usually too large

• The two memory access problem can be 
solved by the use of a special fast-lookup 
hardware cache called associative 
memory

• A.k.a. a translation look-aside buffer (TLB)
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Paging Hardware 
with TLB
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Page Table Structure

• Hierarchical Paging

• Hashed Page Tables

• Inverted Page Tables
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Hierarchical Page Tables

• Allocating the page table contiguously in 
memory is not feasible

• Break up the logical address space into 
multiple page tables

• Recursively apply the paging scheme to the 
page table itself

• A simple technique is a two-level page table
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Two-Level Paging Example
• A logical address (on 32-bit machine with 4K page 

size) is divided into:
– A page number consisting of 20 bits.
– Possible address space of size 220 pages.
– A page offset consisting of 12 bits.
– 12 bits can address 4096 bytes (i.e., all bytes in the 4k 

page).
• Since the page table is paged, the page number is 

further divided into:
– a 10-bit page number. 
– a 10-bit page offset.
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Two-level Address

• Thus, a logical address is as follows:

• where p1 is an index into the outer page 
table, and p2 is the displacement within the 
page of the (inner) page table.

page number page offset

p1 p2 d

10 bits 10 bits 12 bits
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Address-Translation Scheme
• Address-translation scheme for a two-level 

32-bit paging architecture
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Two-Level Page-
Table Scheme

•

{

d
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Shared Memory
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Shared Pages

• Shared code
– One copy of read-only (reentrant) code 

shared among processes (i.e., text editors, 
compilers, window systems). 

– Shared code must appear in same location in 
the logical address space of all processes.

• Private code and data 
– Each process keeps a separate copy of the 

code and data.
– The pages for the private code and data can 

appear anywhere in the logical address 
space.
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Shared Pages Example
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Summary

• Address binding
• Contiguous memory management
• Overlays
• Swapping
• Paging
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Virtual Memory
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Virtual Memory
• Only part of the program needs to be in 

memory for execution.
• Logical address space can therefore be 

much larger than physical address space.
• Physical address spaces can be shared by 

several processes.
• More efficient process creation.
• Virtual memory can be implemented via

– Demand paging
– Demand segmentation
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Virtual Memory that 
is larger than 
physical memory
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Demand Paging
• Bring a page into memory only when it is 

needed.
– Less I/O needed
– Less memory needed 
– Faster response
– More users

• Page is needed ⇒ reference to it
– invalid reference ⇒ abort
– not-in-memory ⇒ bring to memory
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Transfer of a paged
memory to 
contiguous disk
space

A Pager (vs. swapper)

Predictively brings
in pages of the process
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Valid-Invalid Bit
• With each page table entry a valid–

invalid bit is associated
(1 ⇒ in-memory, 0 ⇒ not-in-memory)

• Initially valid–invalid bit is set to 0 on 
all entries

• During address translation, if valid–
invalid bit in page table entry is 0 ⇒
page fault

• Demand paging (all bits initially 0)
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Steps in Handling a Page Fault
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What happens if there is no free frame?

• Page replacement – find some page in 
memory, but not really in use, swap it out.
– algorithm
– performance

• algorithm should result in minimum number of 
page faults

• Same page may be brought into memory 
several times.
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Page Replacement

• Prevent over-allocation of memory by 
modifying page-fault service routine to include 
page replacement

• Use modify (dirty) bit to reduce overhead of 
page transfers 
– only modified pages need to be written to disk

• Page replacement completes separation 
between logical memory and physical memory

• Thus large virtual memory can be provided 
on a smaller physical memory
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Need For Page Replacement
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Basic Page Replacement

Find the location of the desired page on disk
Find a free frame
If there is a free frame, use it
If there is no free frame, use a page 
replacement algorithm to select a victim frame
Read the desired page into the (newly) freed 
frame
Update the page table
Restart the process
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Page Replacement
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Page Replacement Algorithms

• Want lowest page-fault rate.
• Evaluate algorithm by running it on a 

particular string of memory references 
(reference string)  

• Compute the number of page faults on that 
string

• In all our examples, the reference string is 
1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5.
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Graph of Page Faults Versus The Number 
of Frames
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First-In-First-Out (FIFO) Algorithm

• Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
• Replace oldest page
• 3 (4) frames (3 (4) pages can be in memory at 

a time per process)

• More frames, more faults  )-: !
• Implemented with FIFO-queue
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• initialization code
• frequently used code
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FIFO Page Replacement
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FIFO Illustrating Belady’s Anamoly (1976)

more frames ⇒ less page faults
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Optimal Algorithm

• Replace page that will not be used for 
longest period of time (cf. SJF)

• A 4 frames example
1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

• How do we know this?
• Used for measuring how well an algorithm 

performs
• A baseline, we can’t do better

1
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6 page faults

4 5
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Optimal Page Replacement
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Least Recently Used (LRU) Algorithm

Reference string:  1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

• use recent past as approximation
of near future

• Counter implementation
– Every page table entry has a counter; every 

time page is referenced through this entry, 
copy the clock into the counter.

– When a page needs to be replaced, look at 
the counters to determine least recently used

1
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3 4

5

4 3

5
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LRU Page Replacement
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LRU Algorithm (Cont.)

• Stack implementation – keep a stack of 
page numbers in a double link form

• Page referenced
• move it to the top
• requires 6 pointers to be changed
• No search for replacement
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Use Of A Stack to Record The Most Recent Page 
References
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LRU Approximation Algorithm 1
• Reference bit

– With each page associate a bit, initially all 0
– When page is referenced bit set to 1
– Replace the page which is 0 (if one exists)
– We do not know the order, however
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LRU Approximation Algorithm 2

• Keep several reference bits (e.g., 8 bits) per page
• And keep the reference bit (as before)
• At periodic intervals (timer interrupt, e.g., 100 

milliseconds) shift the reference bit of every page 
into the high-order position of the reference bit

• Right shift the reference bits, dropping low order bit
• 0000 0000 – not been used in past intervals
• 1111 1111 – has been used each in interval
• Interpret as unsigned integers, choose smallest as 

victim
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LRU Approximation Algorithm 3

• Second chance 
– Need 1 reference bit
– Clock replacement
– If page to be replaced (in clock order) has 

reference bit set to 1.  then:
• set reference bit 0.
• leave page in memory.
• replace next page (in clock order), subject to same 

rules.
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Second-Chance (clock) Page-Replacement 
Algorithm
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Counting Algorithms

• Keep a counter of the number of references 
that have been made to each page

• LFU Algorithm:  replaces page with smallest 
count

• MFU Algorithm: based on the argument that 
the page with the smallest count was 
probably just brought in and has yet to be 
used
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Allocation of Frames

• Each process needs minimum number of 
pages

• Example:  IBM 370 – 6 pages to handle
MOVE instruction:
– instruction is 6 bytes, might span 2 pages
– 2 pages to handle from
– 2 pages to handle to



ECE 344 Operating Systems 69

Minimum number of frames

instr
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Fixed Allocation

• Two major allocation schemes
– fixed allocation
– priority allocation

• Equal allocation – e.g., if 100 frames and 5 
processes, give each 20 pages.

• Proportional allocation – Allocate according 
to the size of process.
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Fixed Allocation
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Priority Allocation

• Use a proportional allocation scheme using 
priorities rather than size

• If process Pi generates a page fault,
– select for replacement one of its frames
– select for replacement a frame from a process 

with lower priority number
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Global vs. Local Allocation

• Global replacement – process selects a 
replacement frame from the set of all 
frames; one process can take a frame from 
another

• Local replacement – each process selects 
from only its own set of allocated frames.
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Thrashing

• If a process does not have “enough” pages, the 
page-fault rate is very high.  This leads to:
– low CPU utilization (ready queue is empty)
– operating system (may) think that it needs to increase 

the degree of multiprogramming
– another process added to the system
– this process requires pages to be brought in …

• Thrashing ≡ a process is busy swapping pages in 
and out (spends more time paging than executing.)
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Thrashing 

bring in more processes
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Locality
• Why does paging work?
• Due to locality (memory accesses are not random)
• Locality model

– Process migrates from one locality to another
– Locality corresponds to a procedure call (local variables, 

some global variables and instructions of procedure)
– Localities may overlap

• Why does thrashing occur?

sum over size of all localities  > 
total physical memory size
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locality
instructions
local variables
subset of global variables

• Not random
• Execution moves from one 

locality to the next
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Working-Set Model (approximate locality)
• ∆ ≡ working-set window ≡ a fixed number of page 

references. Example:  10,000 instruction
• WSSi (working set size of Process Pi) =

total number of pages referenced in the most 
recent ∆ (varies over time)
– if ∆ too small will not encompass entire locality.
– if ∆ too large will encompass several localities.
– if ∆ = ∞ ⇒ will encompass entire process.

• D = Σ WSSi ≡ total frames demanded
• if D > m ⇒ Thrashing (m is total physical memory)
• Policy if D > m, then suspend one of the 

processes.
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Working-set model
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Keeping Track of the Working Set

• Approximate with interval timer + a reference bit
• Example: ∆ = 10,000

– Timer interrupts after every 5000 time units.
– Keep in memory 2 bits for each page.
– Whenever a timer interrupts copy reference bit to memory 

bits and sets the values of all reference bits to 0.
– If one of the bits in memory = 1 ⇒ page in working set.

• Why is this not completely accurate?
• Improvement = 10 bits and interrupt every 1000 

time units (cost of interrupt!).
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Page-Fault Frequency Scheme
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Summary Memory Management

• Contiguous memory management
• Paging and segmentation
• Virtual memory management based on 

demand paging
• Page replacement algorithm
• Frame allocation strategies
• Thrashing
• Locality and working set model
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OS Lecture
• Concepts and OS hacking
• Processes and Threads
• OS System Structure and Architecture
• Synchronization

– Software based solutions
– Hardware based solutions
– Semaphores, mutexes/locks, CVs, monitors
– Synchronization problems

• Scheduling algorithm
• Memory management
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Assignments
• Tools: CVS, GDB, GCC
• Adding a delta to a large and complex software system

– Not much know methodology about how to do this (but see 
software engineering course)

– Don’t be afraid of the size; work with a localized 
understanding of system; 20K lines of code is nothing 
compared to the size of real OS, DBs, …

• Making design decision which great reach (actually making the 
decision is difficult)

• Implementation of synchronization mechanisms
• Use of synchronization mechanisms
• Implementation of system calls (not just a procedure call)
• Implementation of scheduling algorithms and performance 

counters
• OS and Systems is about hacking; that is building and 

extending large complex software systems
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The Final

• Closed book
• Covers entire lecture and assignments
• Rough breakdown of final, don’t quote me

– 20 – 30 % knowledge questions a la midterm
– 10 – 20 % about assignments
– 20 – 30 % synchronization
– 10 – 20 % memory management
– Rest other course topics
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The End
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Segmentation
• Memory-management scheme that supports user’s

view of memory. 
• A program is a collection of segments.  A segment 

is a logical unit such as:
main program,
procedure, 
function,
method,
object,
local variables, global variables,
common block,
stack,
symbol table, arrays
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User’s View of a Program
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Logical View of Segmentation
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Segmentation Architecture 
• Logical address consists of a two tuple:

<segment-number, offset>,
• Segment table – maps two-dimensional 

physical addresses; each table entry has:
– base – contains the starting physical address where 

the segments reside in memory.
– limit – specifies the length of the segment.

• Segment-table base register (STBR) points 
to the segment table’s location in memory.

• Segment-table length register (STLR)
indicates number of segments used by a 
program;
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Segmentation 
Hardware
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Example of Segmentation
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Sharing of Segments
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Hashed Page Tables

• Common in address spaces > 32 bits.
• The virtual page number is hashed into a 

page table. 
• This page table contains a chain of elements 

hashing to the same location.
• Virtual page numbers are compared in this 

chain searching for a match. If a match is 
found, the corresponding physical frame is 
extracted.
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Hashed Page Table
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Inverted Page Table
• One entry for each real frame of memory.
• Entry consists of the virtual address of the 

page stored in that real memory location, with 
information about the process that owns that 
page.

• Decreases memory needed to store each 
page table, but increases time needed to 
search the table when a page reference 
occurs.

• Use hash table to limit the search to one —
or at most a few — page-table entries.
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Inverted Page Table Architecture


